作為一位杰出的老師,編寫教案是必不可少的,教案有助于順利而有效地開展教學(xué)活動。那么問題來了,教案應(yīng)該怎么寫?下面是小編帶來的優(yōu)秀教案范文,希望大家能夠喜歡!
初中數(shù)學(xué)教案設(shè)計大全篇一
反比例函數(shù)是初中階段所要學(xué)習(xí)的三種函數(shù)中的一種,是一類比較簡單但很重要的函數(shù),現(xiàn)實生活中充滿了反比例函數(shù)的例子。因此反比例函數(shù)的概念與意義的教學(xué)是基礎(chǔ)。
二、學(xué)情分析
由于之前學(xué)習(xí)過函數(shù),學(xué)生對函數(shù)概念已經(jīng)有了一定的認(rèn)識能力,另外在前一章我們學(xué)習(xí)過分式的知識,因此為本節(jié)課的教學(xué)奠定的一定的基礎(chǔ)。
三、教學(xué)目標(biāo)
知識目標(biāo):理解反比例函數(shù)意義;能夠根據(jù)已知條件確定反比例函數(shù)的表達(dá)式.
解決問題:能從實際問題中抽象出反比例函數(shù)并確定其表達(dá)式.情感態(tài)度:讓學(xué)生經(jīng)歷從實際問題中抽象出反比例函數(shù)模型的過程,體會反比例函數(shù)來源于實際.
四、教學(xué)重難點
重點:理解反比例函數(shù)意義,確定反比例函數(shù)的表達(dá)式.
難點:反比例函數(shù)表達(dá)式的確立.
五、教學(xué)過程
(1)京滬線鐵路全程為1463km,某次列車的平均速度v(單位:km/h)隨此次列車的全程運行時間t(單位:h)的變化而變化;
(2)某住宅小區(qū)要種植一個面積1000m2的矩形草坪,草坪的長y(單
位:m)隨寬x(單位:m)的變化而變化。
請同學(xué)們寫出上述函數(shù)的表達(dá)式
14631000(2)y=tx
k可知:形如y=(k為常數(shù),k≠0)的函數(shù)稱為反比例函數(shù),其中__(1)v=是自變量,y是函數(shù)。
此過程的目的在于讓學(xué)生從實際問題中抽象出反比例函數(shù)模型的過程,體會反比例函數(shù)來源于實際.由于是分式,當(dāng)x=0時,分式無意義,所以x≠0。
當(dāng)y=中k=0時,y=0,函數(shù)y是一個常數(shù),通常我們把這樣的函數(shù)稱為常函數(shù)。此時y就不是反比例函數(shù)了。
舉例:下列屬于反比例函數(shù)的是
(1)y=(2)xy=10(3)y=k-1x(4)y=-
此過程的目的是通過分析與練習(xí)讓學(xué)生更加了解反比例函數(shù)的概念問已知y與x成反比例,y與x-1成反比例,y+1與x成反比例,y+1與x-1成反比例,將如何設(shè)其解析式(函數(shù)關(guān)系式)
已知y與x成反比例,則可設(shè)y與x的函數(shù)關(guān)系式為y=
kx?1
k已知y+1與x成反比例,則可設(shè)y與x的函數(shù)關(guān)系式為y+1=xkxkxkxkx2x已知y與x-1成反比例,則可設(shè)y與x的函數(shù)關(guān)系式為y=
已知y+1與x-1成反比例,則可設(shè)y與x的函數(shù)關(guān)系式為y+1=kx?1此過程的目的是為了讓學(xué)生更深刻的了解反比例函數(shù)的概念,為以后在求函數(shù)解析式做好鋪墊。
例:已知y與x2反比例,并且當(dāng)x=3時y=4
(1)求出y和x之間的函數(shù)解析式
(2)求當(dāng)x=1.5時y的值
解析:因為y與x2反比例,所以設(shè)y?k,只要將k求出即可得到y(tǒng)x2
和x之間的函數(shù)解析式。之后引導(dǎo)學(xué)生書寫過程。能從實際問題中抽象出反比例函數(shù)并確定其表達(dá)式最后學(xué)生練習(xí)并布置作業(yè)
通過此環(huán)節(jié),加深對本節(jié)課所內(nèi)容的認(rèn)識,以達(dá)到鞏固的目的。
六、評價與反思
本節(jié)課是在學(xué)生現(xiàn)有的認(rèn)識基礎(chǔ)上進(jìn)行講解,便于學(xué)生理解反比例函數(shù)的概念。而本節(jié)課的重點在于理解反比例函數(shù)意義,確定反比例函數(shù)的表達(dá)式.應(yīng)該對這一方面的內(nèi)容多練習(xí)鞏固。
2022初中上學(xué)期數(shù)學(xué)教案設(shè)計模板篇2為了提高學(xué)生的學(xué)習(xí)興趣,增大學(xué)生的學(xué)習(xí)參與面,減小差距。努力作好教學(xué)工作,在這一學(xué)期中,下文將準(zhǔn)備了初中二年級下冊數(shù)學(xué)教學(xué)設(shè)計如下:
一、教學(xué)目標(biāo):
通過本期的學(xué)習(xí),要使學(xué)生在情感與態(tài)度上,認(rèn)識到數(shù)學(xué)來源于實踐,又反作用于實踐,認(rèn)識現(xiàn)實生活中圖形間的數(shù)量關(guān)系,能夠設(shè)計精美的圖案,提高學(xué)生的審美情趣,培養(yǎng)學(xué)生實事求是、嚴(yán)肅認(rèn)真的學(xué)習(xí)態(tài)度,激發(fā)學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生對數(shù)學(xué)的熱愛,對生活的熱愛,在民主、和諧、合作、探究、有序、分享發(fā)現(xiàn)快樂,感受學(xué)習(xí)的快樂。對于過程與方法,通過學(xué)生積極參與對知識的探究,經(jīng)歷發(fā)現(xiàn)知識,發(fā)現(xiàn)知識間的內(nèi)在聯(lián)系,讓學(xué)生經(jīng)歷發(fā)現(xiàn)知識道路上坎坎坷坷,達(dá)到深刻理解掌握知識的目的,達(dá)到漫江碧透,魚翔淺底的境界,在經(jīng)歷這些活動中,提高學(xué)生的動手實踐能力,提高學(xué)生的邏輯推理能力與邏輯思維能力,自主探究,解決問題的能力,提高運算能力,使所有學(xué)生在數(shù)學(xué)上都有不同的發(fā)展,盡可能接近其發(fā)展的最大值,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣,發(fā)展學(xué)生的非智力因素,使學(xué)生潛移默化的接受辯證唯物主義的熏陶,提高學(xué)生素質(zhì)。
二、教材分析
本學(xué)期教學(xué)內(nèi)容共計五章,知識的前后聯(lián)系,教材的教學(xué)目標(biāo),重、難點分析如下:
第十六章分式本章的主要內(nèi)容包括:分式的概念,分式的基本性質(zhì),分式的約分與通分,分式的加、減、乘、除運算,整數(shù)指數(shù)冪的概念及運算性質(zhì),分式方程的概念及可化為一元一次方程的分式方程的解法。
第十七章反比例函數(shù)函數(shù)是研究現(xiàn)實世界變化規(guī)律的一個重要模型,本單元學(xué)生在學(xué)習(xí)了一次函數(shù)后,進(jìn)一步研究反比例函數(shù)。學(xué)生在本章中經(jīng)歷:反比例函數(shù)概念的抽象概括過程,體會建立數(shù)學(xué)模型的思想,進(jìn)一步發(fā)展學(xué)生的抽象思維能力;經(jīng)歷反比例函數(shù)的圖象及其性質(zhì)的探索過程,在交流中發(fā)展能力這是本章的重點之一;經(jīng)歷本章的重點之二:利用反比例函數(shù)及圖象解決實際問題的過程,發(fā)展學(xué)生的數(shù)學(xué)應(yīng)用能力;經(jīng)歷函數(shù)圖象信息的識別應(yīng)用過程,發(fā)展學(xué)生形象思維;能根據(jù)所給信息確定反比例函數(shù)表達(dá)式,會作反比例函數(shù)圖象,并利用它們解決簡單的實際問題。本章的難點在于對學(xué)生抽象思維的培養(yǎng),以及提高數(shù)形結(jié)合的意識和能力。
第十八章勾股定理直角三角形是一種特殊的三角形,它有許多重要的性質(zhì),如兩個銳角互余,30度角所對的直角邊等于斜邊的一半,本章所研究的勾股定理,也是直角三角形的性質(zhì),而且是一條非常重要的性質(zhì),本章分為兩節(jié),第一節(jié)介紹勾股定理及其應(yīng)用,第二節(jié)介紹勾股定理的逆定理。
第十九章四邊形四邊形是人們?nèi)粘I钪袘?yīng)用較廣泛的一種圖形,尤其是平行四邊形、矩形、菱形、正方形、梯形等特殊四邊形的用處更多。因此,四邊形既是幾何中的基本圖形,也是空間與圖形領(lǐng)域研究的主要對象之一。本章是在學(xué)生前面學(xué)段已經(jīng)學(xué)過的四邊形知識、本學(xué)段學(xué)過的多邊形、平行線、三角形的有關(guān)知識的基礎(chǔ)上來學(xué)習(xí)的,也可以說是在已有知識的基礎(chǔ)上做進(jìn)一步系統(tǒng)的整理和研究,本章內(nèi)容的學(xué)習(xí)也反復(fù)運用了平行線和三角形的知識。從這個角度來看,本章的內(nèi)容也是前面平行線和三角形等內(nèi)容的應(yīng)用和深化。
第二十章數(shù)據(jù)的分析本章主要研究平均數(shù)、中位數(shù)、眾數(shù)以及極差、方差等統(tǒng)計量的統(tǒng)計意義,學(xué)習(xí)如何利用這些統(tǒng)計量分析數(shù)據(jù)的集中趨勢和離散情況,并通過研究如何用樣本的平均數(shù)和方差估計總體的平均數(shù)和方差,進(jìn)一步體會用樣本估計總體的思想。
三、提高學(xué)科教育質(zhì)量的主要措施:
1、認(rèn)真做好教學(xué)七認(rèn)真工作。把教學(xué)七認(rèn)真作為提高成績的主要方法,認(rèn)真研讀新課程標(biāo)準(zhǔn),鉆研新教材,根據(jù)新課程標(biāo)準(zhǔn),擴(kuò)充教材內(nèi)容,認(rèn)真上課,批改作業(yè),認(rèn)真輔導(dǎo),認(rèn)真制作測試試卷,也讓學(xué)生學(xué)會認(rèn)真學(xué)習(xí)。
2、興趣是最好的老師,愛因斯坦如是說。激發(fā)學(xué)生的興趣,給學(xué)生介紹數(shù)學(xué)家,數(shù)學(xué)史,介紹相應(yīng)的數(shù)學(xué)趣題,給出數(shù)學(xué)課外思考題,激發(fā)學(xué)生的興趣。
3、引導(dǎo)學(xué)生積極參與知識的構(gòu)建,營造民主、和諧、平等、自主、探究、合作、交流、分享發(fā)現(xiàn)快樂的高效的學(xué)習(xí)課堂,讓學(xué)生體會學(xué)習(xí)的快樂,享受學(xué)習(xí)。引導(dǎo)學(xué)生寫復(fù)習(xí)提綱,使知識來源于學(xué)生的構(gòu)造。
4、引導(dǎo)學(xué)生積極歸納解題規(guī)律,引導(dǎo)學(xué)生一題多解,多解歸一,培養(yǎng)學(xué)生透過現(xiàn)象看本質(zhì),提高學(xué)生舉一反三的能力,這是提高學(xué)生素質(zhì)的根本途徑之一,培養(yǎng)學(xué)生的發(fā)散思維,讓學(xué)生處于一種思如泉涌的'狀態(tài)。
5、運用新課程標(biāo)準(zhǔn)的理念指導(dǎo)教學(xué),積極更新自己腦海中固有的教育理念,不同的教育理念將帶來不同的教育效果。
6、培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣,陶行知說:教育就是培養(yǎng)習(xí)慣,有助于學(xué)生穩(wěn)步提高學(xué)習(xí)成績,發(fā)展學(xué)生的非智力因素,彌補(bǔ)智力上的不足。
7、指導(dǎo)成立課外興趣小組的民間組織,開展豐富多彩的課外活動,開展對奧數(shù)題的研究,課外調(diào)查,操作實踐,帶動班級學(xué)生學(xué)習(xí)數(shù)學(xué),同時發(fā)展這一部分學(xué)生的特長。
8、開展分層教學(xué),布置作業(yè)設(shè)置a、b、c三類分層布置分別適合于差、中、好三類學(xué)生,課堂上的提問要照顧好、中、差三類學(xué)生,使他們都等到發(fā)展。
9、進(jìn)行個別輔導(dǎo),優(yōu)生提升能力,扎實打牢基礎(chǔ)知識,對差生,一些關(guān)鍵知識,輔導(dǎo)差生過關(guān),為差生以后的發(fā)展鋪平道路。
10、站在系統(tǒng)的高度,使知識構(gòu)筑在一個系統(tǒng),上升到哲學(xué)的高度,八方聯(lián)系,渾然一體,使學(xué)生學(xué)得輕松,記得牢固。
2022初中上學(xué)期數(shù)學(xué)教案設(shè)計模板篇3隨著科學(xué)技術(shù)的發(fā)展,教育資源和教育需求也隨之增長和變化。我校進(jìn)行了初中數(shù)學(xué)分層教學(xué)課題研究,而分層次備課是搞好分層教學(xué)的關(guān)鍵,教師應(yīng)在吃透教材、大綱的情況下,按照不同層次學(xué)生的實際情況,設(shè)計好分層次教學(xué)的全過程。本文將結(jié)合本人的教學(xué)經(jīng)驗,對分層教學(xué)教案設(shè)計進(jìn)行初步探討。
1教學(xué)目標(biāo)的制定
制定具體可行的教學(xué)目標(biāo),先要分清哪些屬于共同目標(biāo),哪些屬于層次目標(biāo)。并在知識與技能、過程與方法、情感態(tài)度與價值觀三個方面對不同層次的學(xué)生制定具體的要求。
2教法學(xué)法的制定
制定教法學(xué)法應(yīng)結(jié)合各層次學(xué)生的具體情況而定,如對a層學(xué)生少講多練,注重培養(yǎng)其自學(xué)能力;對b層學(xué)生,則實行精講精練,注重課本上的例題和習(xí)題的處理;對c層學(xué)生則要求要低,淺講多練,弄懂基本概念,掌握必要的基礎(chǔ)知識和基本技能。
3教學(xué)重難點的制定
教學(xué)重難點的制定也應(yīng)結(jié)合各層次學(xué)生的具體情況而定。
4教學(xué)過程的設(shè)計
4.1情境導(dǎo)向,分層定標(biāo)。教師以實例演示、設(shè)問等多種方法導(dǎo)入新課。要利用各種教學(xué)資料創(chuàng)設(shè)恰當(dāng)?shù)膶W(xué)習(xí)情境為各層學(xué)生呈現(xiàn)適合于本層學(xué)生水平學(xué)習(xí)的內(nèi)容。
4.2分層練習(xí),探討生疑。學(xué)生對照各自的目標(biāo)分層自學(xué)。教師要鼓勵學(xué)生主動實踐,自覺地去發(fā)現(xiàn)問題、探討問題、解決問題。
4.3集體回授,異步釋疑。“集體回授”主要是針對人數(shù)占優(yōu)勢的b層學(xué)生,為解決具有共性的問題而組織的一種集體教學(xué)活動。教師為那些來不及解決的、不具有共性的問題分先后在層內(nèi)釋疑即“異步釋疑”。
5練習(xí)與作業(yè)的設(shè)計
教師在設(shè)計練習(xí)或布置作業(yè)時要遵循“兩部三層”的原則。“兩部”是指練習(xí)或作業(yè)分為必做題和選做題兩部分;“三層”是指教師在處理練習(xí)時要具有三個層次:第一層次為知識的直接運用和基礎(chǔ)練習(xí);第二、三兩層次的題目為選做題,這樣可使a層學(xué)生有練習(xí)的機(jī)會,b、c兩層學(xué)生也有充分發(fā)展的余地。
分層教學(xué)下教師不能再“拿一個教案用到底”,而要精心地設(shè)計課堂教學(xué)活動,針對不同層次的學(xué)生選擇恰當(dāng)?shù)姆椒ê褪侄危私鈱W(xué)生的實際需求,關(guān)心他們的進(jìn)步,改革課堂教學(xué)模式,充分調(diào)動學(xué)生的學(xué)習(xí)主動性,創(chuàng)造良好的課堂教學(xué)氛圍,形成成功的激勵機(jī)制,確保每一個學(xué)生都有所進(jìn)步。
2022初中上學(xué)期數(shù)學(xué)教案設(shè)計模板篇4教學(xué)目標(biāo)
1.了解公式的意義,使學(xué)生能用公式解決簡單的實際問題;
2.初步培養(yǎng)學(xué)生觀察、分析及概括的能力;
3.通過本節(jié)課的教學(xué),使學(xué)生初步了解公式來源于實踐又反作用于實踐。
教學(xué)建議
一、教學(xué)重點、難點
重點:通過具體例子了解公式、應(yīng)用公式.
難點:從實際問題中發(fā)現(xiàn)數(shù)量之間的關(guān)系并抽象為具體的公式,要注意從中反應(yīng)出來的歸納的思想方法。
二、重點、難點分析
人們從一些實際問題中抽象出許多常用的、基本的數(shù)量關(guān)系,往往寫成公式,以便應(yīng)用。如本課中梯形、圓的面積公式。應(yīng)用這些公式時,首先要弄清楚公式中的字母所表示的意義,以及這些字母之間的數(shù)量關(guān)系,然后就可以利用公式由已知數(shù)求出所需的未知數(shù)。具體計算時,就是求代數(shù)式的值了。有的公式,可以借助運算推導(dǎo)出來;有的公式,則可以通過實驗,從得到的反映數(shù)量關(guān)系的一些數(shù)據(jù)(如數(shù)據(jù)表)出發(fā),用數(shù)學(xué)方法歸納出來。用這些抽象出的具有一般性的公式解決一些問題,會給我們認(rèn)識和改造世界帶來很多方便。
三、知識結(jié)構(gòu)
本節(jié)一開始首先概述了一些常見的公式,接著三道例題循序漸進(jìn)的講解了公式的直接應(yīng)用、公式的先推導(dǎo)后應(yīng)用以及通過觀察歸納推導(dǎo)公式解決一些實際問題。整節(jié)內(nèi)容滲透了由一般到特殊、再由特殊到一般的辨證思想。
四、教法建議
1.對于給定的可以直接應(yīng)用的公式,首先在給出具體例子的前提下,教師創(chuàng)設(shè)情境,引導(dǎo)學(xué)生清晰地認(rèn)識公式中每一個字母、數(shù)字的意義,以及這些數(shù)量之間的對應(yīng)關(guān)系,在具體例子的基礎(chǔ)上,使學(xué)生參與挖倔其中蘊(yùn)涵的思想,明確公式的應(yīng)用具有普遍性,達(dá)到對公式的靈活應(yīng)用。
2.在教學(xué)過程中,應(yīng)使學(xué)生認(rèn)識有時問題的解決并沒有現(xiàn)成的公式可套,這就需要學(xué)生自己嘗試探求數(shù)量之間的關(guān)系,在已有公式的基礎(chǔ)上,通過分析和具體運算推導(dǎo)新公式。
3.在解決實際問題時,學(xué)生應(yīng)觀察哪些量是不變的,哪些量是變化的,明確數(shù)量之間的對應(yīng)變化規(guī)律,依據(jù)規(guī)律列出公式,再根據(jù)公式進(jìn)一步地解決問題。這種從特殊到一般、再從一般到特殊認(rèn)識過程,有助于提高學(xué)生分析問題、解決問題的能力。